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Let us agree on what the space of events is in IR

� Sample space and its points (an experiment).

� We assign probabilities to the points of the space according to the
outcomes of the experiment.

� Probabilities are spread from the sample points to arbitrary events A,
which consist of a certain number of sample points.

– An event in IR is the occurrence or not of certain terms in a piece
of text. A collection D of documents can be seen as

– a set of experiments or a single experiment.
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The event space

� Let T be the set of terms of the language: this is the set of all sample
points.

� Let D be a collection of douments containing L tokens (occurrences of
terms). Let o1; : : : ; oL be the outcomes of our experiments according

D.

� Let us consider the event: the term t occurs in an arbitrary outcome

oj.

� The outcomes can be thought as independent trials as we were toss-
ing a coin or extracting balls from an urn.
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Bernoulli’s model of IR

� o1; : : : ; oL. Among these L tokens, TF are occurrences of the term t.
Its frequency is f = TF

L
.

� What is the probability p of having t? We can compute the a posteriori
probability p of observing the frequency f in the experiment with the
Bayes theorem, by maximising the likelihood:

P (pjf) = B(TF; L; p) =

 
L

TF

!
pTF(1� p)L�TFT (1)

� It is maximum when p = f .
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Experiment with a single document (or a subset
of documents)

� Once we have for all terms their probabilities p(t) of occurrence in an
arbitrary piece of text we can make other experiments.

� Let d be a document and let o1; : : : ; ol the experiment associated to
the document. Among these we observe tf occurrences of t out of

l(d). Its frequency is f = tf
l(d)

.

� What is the probability p of having t in the document, provided that the
document is modelled by a Bernoulli’s process?

P (pjf) = B(tf; l(d); p) =

 
l(d)

tf

!
ptf(1� p)l(d)�tf (2)
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Experiment with a document (or a subset of doc-
uments)

P (pjf) = B(tf; l(d); p) =

 
l(d)

tf

!
ptf(1� p)l(d)�tf (3)

� A term is random in a document when the probability P(pjf) is maxi-
mized, namely when p = f .

� Diverges from randomness when the probability P(pjf) is minimised,
namely when f � p.

� If a term is random in each document then it is a stop word (similarly
to Harter’s model)
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A significant term in a document (or in an homo-
geneous sample of documents) does not follow
the binomial law

� B(tf; l(d); p) contains the information on how much significant is the
term in the document.

� Instead of computing the probability of relevance prob(qjd), as in the
language model, we compute the improbability of obtaining this term
as the document were assembled by a random process.

� we give a weight to the term which is inversely related to its probability
of occurring under a random process.
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Extracting significant term from a (small) set of
documents:query expansion

� The improbability of having a term in a document by chance can be
given by

Inf(tjd; D) = � logB(tf; l(d); p) (4)

� Example. Retrieve the set T = fd1; d2; d3g of the first 3 documents,
from the query “What is a prime factor?”
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term tfq tf p Inf(tjT;D) nInf tfq+ 0:5 � nInf

prime 1 55 6:4 � 10�5 428:04 1.0000 1.5000
number 0 99 1:4 � 10�3 412:48 0.9636 0,4818
factor 1 49 1:83 � 10�4 299:67 0.7001 1,3500
integ 0 30 4:36 � 10�5 225:19 0.5261 0,2630
primal 0 8 3:17 � 10�6 76:77 0.1794 0,0896
multipl 0 15 1:78 � 10�4 68:74 0.1606 0,0802
test 0 21 6:24 � 10�4 68:28 0.1595 0,0797
divid 0 11 6:28 � 10�5 62:53 0.1461 0,0730
common 0 15 2:65 � 10�4 60:34 0.1410 0,0704
odd 0 9 2:62 � 10�5 60:26 0.1408 0,0703

The baseline for TREC-10 is about 21% of average precision. By adding
this model of query expansion we get more than 25% of average precision

(best run was 22.25%)



Why binomial law was not used before?

� Harter’s work was about indexing. People were looking for term weight-
ing functions, based on the assumption that indexing6= term-weighting.

� Harter assumed that documents had the same length (term frequency
normalization was missing).

� Bernoulli’s is a cumbersome formula to implement. I used different
limiting formulas which are very good approximations.

� BM25 claims that is derived by the 2-Poisson model, and Poisson is
an approximation of the Binomial law.
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The use of the binomial law for weighting terms

� The improbability Inf(tjd; D) is the initial step for computing the in-
formation content of a term in a document.

� The set of document Et (the Elite set of a term) containing the term
can be considered as an homogeneous piece of text. The distribution
of “significant” terms in Et deviates from that of a random process.

10



The aftereffect model in the Elite set Et

� A rare event, like the occurrences of a word in a text, suddenly may
become very frequent in a portion of text (e. g. a document).

� The observation of tf tokens of a term in a portion of a document
increases our expectation of encountering the same word in the rest
of the document.

� A large number of occurrences of a rare term in a small portion of text
suggests us that the probability of encountering a new occurrence into
an homogenous piece of text is almost certain.

p(tf + 1jtf; d; Et) � 1
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Urn models for modelling the aftereffect I

p(tf + 1jtf; d; Et) � 1

The risk is
1� p(tf + 1jtf; d; Et) � 0

the term weight is:

weight = gain = risk � Inf(tf jd; D)

� Risk with Laplace’s law of succession

risk = 1� p(tf + 1jtf; d; Et) �

1

tf + 1
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Urn models for modelling the aftereffect II

p(tf + 1jtf; d; Et) � 1

The risk is
1� p(tf + 1jtf; d; Et) � 0

weight= gain = risk � inf(tf jd; D)

� We add a new token of the word in the collection and we compute what
is the probability of having this token in the document by chance (ratio
of Bernoulli’s processes). The risk is:

risk =

B(tf + 1; Ft+ 1; p)

B(tf +1; Ft; p)

=

Ft+ 1

nt(tf +1)

where nt is the size of the Elite set and Ft the number of occurrences
of t in the Elite set
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The aftereffect model in summary

� We make a decision when observing a term within a document: either
it is a good descriptor of the document or not.

� If we accept t as a document descriptor we take some risk. (as in
Ponte–Croft’s language model).

� We minimise the error by considering only the actual gain portion of
the information content.

Inf(tjd; D) = gain+ loss

weight= gain
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Weighting terms

Inf(tjd; D) = gain+ loss

weight= gain

� The risk of accepting a term is inversely related to its term frequency
in the document with respect to the elite set

� The aftereffect model computes the conditional probability of having a
new occurrence of the term once we have observed tf ones.

weight= gain = [1� p(tf + 1jtf; d; Et)] � Inf(tjd; D)
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Term frequency normalization

Binomial law treats documents as they were of the same length.

� The distribution is uniform

tfn = tf �
avg length

l(d)

� The term frequency distribution is a function of the length:

tfn = tf � log
 

1+

avg length

l(d)

!
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� tfn is given by the Zipfian like distribution

tfn = tf �
 

avg length

l(d)

!A



Weighting formulas
weight= gain = risk � Inf(tjd; D)

� We have 7 basic models to compute Inf(tjd; D) (e.g. Bose-Einstein
statistics)

� We have 2 models to compute the aftereffect (Polya’s models of after-
effect and theory of accidents should be still explored)

� We have 3 models for term frequency normalization.

� We have several models for query expansions.
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� We have thus many basic models and also their combinations can
improve results.



TREC 10, topics 501-550. Relevant documents: 3363
Unexpanded runs

Models AvegPr Pr5 Pr10 Pr20 R-Pr Rel Ret

I(n)B2 0.2073 0.4120 0.3700 0.3120 0.2431 2377

I(n)L2 0.2031 0.4120 0.3540 0.3080 0.2354 2393

I(ne)B2 0.2082 0.4120 0.3660 0.3170 0.2464 2406

I(ne)L2 0.2016 0.4000 0.3600 0.3060 0.2380 2296

BEB2 0.2084 0.4080 0.3720 0.3170 0.2464 2401

BEL2 0.2014 0.4150 0.3580 0.3030 0.2358 2295

PB2 0.2036 0.3920 0.3440 0.2970 0.2349 2407

PL2 0.2093 0.4120 0.3640 0.3240 0.2423 2454
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TREC 10, topics 501-550. Relevant documents: 3363
Expansion method: Bernoulli

Models AvegPr Pr5 Pr10 Pr20 R-Pr Rel Ret

I(n)B2 0.2402 0.4200 0.3840 0.3110 0.2733 2522

I(n)L2 0.2573 0.4160 0.3920 0.3140 0.2797 2522

I(ne)B2 0.2515 0.4400 0.3940 0.3150 0.2815 2528

I(ne)L2 0.2406 0.4160 0.3900 0.3120 0.2670 2471

BEB2 0.2497 0.4360 0.3960 0.3140 0.2804 2521

BEL2 0.2379 0.4120 0.3820 0.3110 0.2664 2464

PB2 0.2152 0.3800 0.3420 0.2920 0.2464 2493

PL2 0.2372 0.4400 0.3800 0.3260 0.2757 2591
TREC-10 best run 0.2225 - 0.3440 0.2860 - -



Modelling IR by computing the divergence from
randomness

� It is a modular framework with 4 independent components. All models
have an excellent performance.

� It is purely theoretical and we do not need to train the system.

� It is parameter free system. We do not need to learn or estimate pa-
rameters by using the bayesian methodology.

� The matching function is easy to implement. All models use at least 5
and at most 6 random variables which are provided by the statistics of
the collection.
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Research issues

� Term frequency normalization still need a systematic and foundational
treatment. We have now working models but why them and not oth-
ers?

� Many different and sophisticated models of aftereffect can be defined.

� Query expansion can be refined. Poor query expansion happens when
the informative contents of the terms of the query are lower than those
of added terms.

� Integration of the basic model with o ther random variables (proximity,
co-occurrence)
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� Integration with the link analysis.


